
The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi Clinic
Editor, on 76004.3437@compuserve.com

or write/fax us at The Delphi Magazine

What Tasks Are Running?

QHow can I find out which
programs are running on my

users’ machines?

ATo find currently loaded
programs requires using

some ToolHelp routines. Which
ones you use depends on what you
want to find. It seems there are four
common requirements: finding the
names of all running tasks (ie
programs), finding the executable
file names of all running tasks, find-
ing the names of all modules (ie
tasks and DLLs, including fonts and
.DRV drivers) and finding the
executable file names of all
modules. Listing 1 includes four
routines which do all these, taken
from the unit PROGRAMS.PAS on
the disk. Just pass in a TStrings
object as a parameter to any of
them, and it will be filled with the
relevant names. So to fill up a list-
box, for example, you could call
GetModuleExes(Listbox1.Items).

Intercepting Keystrokes

QHow do I trap the Enter key
in edit boxes and do some-

thing like treat it as a Tab keypress
and move to the next control?

AFirstly, you need to decide
whether this should apply all

over a form or in a particular
control or set of controls (the con-
trol type is not important, although
see below). If for the form, then set
the form’s KeyPreview property to
True and do the work in the form’s
OnKeyPress handler. If for one
control, do it in the control’s
OnKeyPress handler, and if for a set
of controls, make them all share an
OnKeyPress handler (if the target
action is the same). It’s worth

procedure GetTaskModules(Strings: TStrings);
var TE: TTaskEntry;
begin
 Strings.Clear;
 TE.dwSize := SizeOf(TE);
 if TaskFirst(@TE) then repeat
 Strings.Add(StrPas(TE.szModule));
 until not TaskNext(@TE);
end;

procedure GetTaskExes(Strings: TStrings);
var TE: TTaskEntry;
 ME: TModuleEntry;
begin
 Strings.Clear;
 TE.dwSize := SizeOf(TE);
 ME.dwSize := SizeOf(ME);
 if TaskFirst(@TE) then repeat
 ModuleFindHandle(@ME, TE.hModule);
 Strings.Add(StrPas(ME.szExePath));
 until not TaskNext(@TE);
end;

procedure GetModules(Strings: TStrings);
var ME: TModuleEntry;
begin
 Strings.Clear;
 ME.dwSize := SizeOf(ME);
 if ModuleFirst(@ME) then repeat
 Strings.Add(StrPas(ME.szModule));
 until not ModuleNext(@ME);
end;

procedure GetModuleExes(Strings: TStrings);
var ME: TModuleEntry;
begin
 Strings.Clear;
 ME.dwSize := SizeOf(ME);
 if ModuleFirst(@ME) then repeat
 Strings.Add(StrPas(ME.szExePath));
 until not ModuleNext(@ME);
end;

➤ Listing 1

mentioning at this point that a
focused button, or any button with
its Default property set to True will
always take the Enter key to be the
equivalent of clicking it. If you want
to use the Enter key to navigate
around your form, set all the
Default properties to False.

Normally, we want Enter to go
round the natural tab order, but we
may also want Shift-Tab to go
round in reverse. We can detect the
state of the Shift key at any time
using the GetKeyState API. If the
high bit is set, it is currently
pressed. The code in Listing 2 will
do the trick. Note that we test the
Key parameter against ASCII ver-

sions of the virtual key code we are
looking for. Also, Key gets set to a
zero character (there is no key with
a virtual key code of zero) if we
want to hide or swallow the key, ie
we do not wish normal processing
(often a beep) to occur.

Opening And Closing
Maximized MDI Children
In Windows 3.1x

QRunning under Windows 3.1,
the MDI project from the

Project Template Gallery exhibits a
problem. If you choose File | New,
maximise this child window and
double-click its system box (to the

56 The Delphi Magazine Issue 8

left of the File menu) it doesn’t
close, whereas when restored, it
does. This problem does not occur
in Windows 95. Also, if I set the MDI
child’s WindowState property to
wsMaximized at design time, choos-
ing File | New causes a normal
window to be created which is then
quite clearly maximised. This
makes the program look rough
around the edges (even in Win-
dows 95). Can this be fixed?

ALet’s take the latter problem
first, since it’s easier. The

reason the MDI child is created
restored and then maximised is
due to certain unspecified prob-
lems that can occur if you make it
maximised straight off. The snip-
pet from TForm.CMShowingChanged in
FORMS.PAS shown in Listing 3
gives the clue.

To avoid the flickering you get on
screen, Neil Rubenking (email
CompuServe 72241,50) suggests
changing the body of the project’s
TMainForm.CreateMDIChild (in the
file MAIN.PAS) from:

{ create a new MDI child window }

Child :=
 TMDIChild.Create(Application);
Child.Caption := Name;

to:

LockWindowUpdate(Handle);
{ create a new MDI child window }

Child :=
 TMDIChild.Create(Application);
Child.Caption := Name;
LockWindowUpdate(0);

As for the other problem, this has
been subject of debate since
Windows 3.0, where there was a
bug. The bug was fixed, but not
completely, in Windows 3.1. Princi-
pally, the problem won’t occur if
the MDI client (TForm.ClientHandle)
is the first child in the MDI window,
but it isn’t in a Delphi application
with a speedbar and/or status line.
Two solutions were presented in
an online discussion of this prob-
lem dating back to May 1995. With
the authors’ permissions I am
reproducing them here.

The first solution involves modi-
fying the VCL. Find this line in
TForm.AlignControls in the file
FORMS.PAS:

SetWindowPos(FClientHandle,
 HWND_BOTTOM, Left, Top,
 Right - Left, Bottom - Top,
 SWP_NOCOPYBITS);

Now change the HWND_BOTTOM to
HWND_TOP. The second solution
requires no VCL changes. In the
private section of your main MDI
form class add:

procedure WMNCLButtonDblClk(
 var Msg: TWMNCLButtonDblClk);
 message WM_NCLButtonDblClk;

Now add the code in Listing 4 to the
implementation section.

Converting Times To Floats

QIf I have a TTimeField in a ta-
ble, I can get the time as a

floating point number by using the
AsFloat method. This allows me to
add and subtract start and end
times. How do I get a floating point
version of a normal TDateTime time
value? There is no TimeToFloat
routine.

AFortunately there is no need
for such a routine. The

TDateTime data type is implemented
as a Double anyway. The whole part
represents the number of days
since some starting point and the
fractional part is the time as a frac-
tion of a day. In Delphi 1 the num-
ber of days was measured from 1st
Jan, 0001. Delphi 2 changes this
(for OLE Automation compatibil-
ity) to be 30th December, 1899. To
convert a Delphi 1 TDateTime value
to a Delphi 2 value, subtract Dat-
eDelta (693594) from the Delphi 1.0
date. This value is the number of
days between the Delphi 1 and Del-
phi 2 starting dates.

For example, consider the date
1st Jan, 1900. In Delphi 1 this gives
a TDateTime value of 693596. In Del-
phi 2 this gives a value of only 2.
The Delphi 1 value needs DateDelta
taken away to yield the correct
TDateTime value in Delphi 2.

if FormStyle = fsMDIChild then begin
 { Fake a size message to get MDI to behave }
 if FWindowState = wsMaximized then begin
 SendMessage(Application.MainForm.ClientHandle,
 WM_MDIRESTORE, Handle, 0);
 ShowWindow(Handle, SW_SHOWMAXIMIZED);
 end

➤ Listing 3

procedure TForm1.FormKeyPress(Sender: TObject; var Key: Char);
begin
 if Key = Chr(vk_Return) then begin
 Key := #0;
 SelectNext(ActiveControl, GetKeyState(vk_Shift) and $80 = 0, True);
 end;
end;

➤ Listing 2

procedure TMainForm.WMNCLButtonDblClk(var Msg: TWMNCLButtonDblClk);
var tScreenPt, ClientPt: TPoint;
begin
 ScreenPt.X := Msg.XCursor;
 ScreenPt.Y := Msg.YCursor;
 ClientPt := ScreenToClient(ScreenPt);
 if (Msg.HitTest = htMenu) and (ClientPt.X < GetSystemMetrics(sm_CYMenu))
 and (ActiveMDIChild <> nil) and
 (ActiveMDIChild.WindowState = wsMaximized) then begin
 ActiveMDIChild.Close;
 Msg.Result := 0;
 end else
 inherited;
end;

➤ Listing 4

April 1996 The Delphi Magazine 57

Bitmaps For Brushes

QWhy can’t I set up a custom
bitmap brush? A statement

like this fails:

 Form1.Canvas.Brush.Bitmap.LoadFromFile(
 ’Brush.Bmp’);

AA brush’s bitmap starts off
as nil. If you want to use a

custom bitmap, you need to assign
a valid TBitmap object to the prop-
erty first. Note that you are also
responsible for freeing the bitmap.
Listing 5 is a code snippet from the
project BRUSH.DPR. There’s a
section in \DELPHI\MANUALS.TXT
which describes how to update a

BrushBmp: TBitmap;
...
BrushBmp := TBitmap.Create;
BrushBmp.LoadFromFile(’brush.bmp’);
{ A brush’s bitmap starts nil - assign it a valid TBitmap }
Brush.Bitmap := BrushBmp;
...
{ A brush doesn’t delete its bitmap object }
Canvas.Brush.Bitmap := nil;
BrushBmp.Free;

➤ Listing 5

const
 vtInteger = 0;
 vtBoolean = 1;
 vtChar = 2;
 vtExtended = 3;
 vtString = 4;
 vtPointer = 5;
 vtPChar = 6;
 vtObject = 7;
 vtClass = 8;
type
 TVarRec = record
 case Integer of
 vtInteger :
 (VInteger: Longint;
 VType: Byte);
 vtBoolean :
 (VBoolean: Boolean);
 vtChar :
 (VChar: Char);
 vtExtended :
 (VExtended: PExtended);
 vtString :
 (VString: PString);
 vtPointer :
 (VPointer: Pointer);
 vtPChar :
 (VPChar: PChar);
 vtObject :
 (VObject: TObject);
 vtClass :
 (VClass: TClass);
 end;

➤ Listing 6

function Add(const Values: array of const): Double;
var Loop: Byte;
const BoolStrs: array[Boolean] of String[5] = (’False’, ’True’);

procedure Error(const S: String);
begin
 raise EInvalidOp.Create(’Bogus value ’ + S);
end;

begin
 Result := 0;
 for Loop := Low(Values) to High(Values) do
 with Values[Loop] do
 case VType of
 vtInteger : Result := Result + VInteger;
 vtBoolean : Error(BoolStrs[VBoolean]);
 vtChar :
 if VChar in [’0’..’9’] then
 Result := Result + Ord(VChar) - Ord(’0’)
 else
 Error(’"’ + VChar + ’"’);
 vtExtended : Result := Result + VExtended^;
 vtString :
 try
 Result := Result + StrToFloat(VString^)
 except
 Error(’"’ + VString^ + ’"’)
 end;
 vtPointer : Error(Format(’%p’, [VPointer]));
 vtPChar : Error(StrPas(VPChar));
 vtObject :
 { Forms don’t have a name property value read in }
 if (VObject is TComponent) and not (VObject is TForm) then
 Error(TComponent(VObject).Name + ’: ’ + VObject.ClassName)
 else
 Error(VObject.ClassName);
 vtClass: Error(VClass.ClassName);
 end;
end;

➤ Listing 7

brush once you change a bitmap
that a brush is referencing.

Multiple Arguments

QI am trying to implement a
routine that takes an array of

values and adds them together.
Can you give some help on accept-
ing valid values, including strings
and characters that represent
numbers.

AThis facility of Delphi’s, to
allow a user-defined routine

to take a variable number of argu-
ments (as elements of an array)
and let you examine their type and
value, is so useful that I am happy

to supply another example. The
concept of passing an array, built
on the fly, to a routine should be
familiar to anyone who has called
such routines as TTable.FindKey,
Format and MessageDlg, but imple-
menting them is not as easy as call-
ing them. When declaring a routine
that takes an array of any type of
argument, the array is declared to
be const Argument: array of const.
When examining the values of the
array (whose bounds go from
Low(Argument) to High(Argument)
and must number at least one)
their type will be TVarRec, a variant
record defined, but not explained
in depth, in the on-line help and
reproduced in Listing 6.

The idea is to examine the VType
field (whose value will be one of
vtInteger, vtBoolean, vtChar etc)
and use it to determine what other
field to use to get the value of the
parameter. So if VType is vtExtended
the field you’d look at is VExtended.
This is of type PExtended – the
address of (or pointer to) a floating
point number – so the value of the
parameter would be VExtended^.

The example routine (Listing 7)
will accept numbers that are
floating points or integers and
those represented by strings and

58 The Delphi Magazine Issue 8

characters. All error values will
cause an exception to be raised,
displaying the value in question.
This allows the example to show
how to read all data types. This
code is shown being called cor-
rectly and incorrectly (in a number
of cases) in project VARARGS.DPR.

Table Locks

QI have an application where
several Paradox tables need

to be opened with table write-locks
prior to multi-table batch updates.
Other users need access to the ta-
bles in read-only mode (interactive
Paradox users, etc) so I can’t open
the tables for exclusive use for my
batch operation. Delphi does not
seem to support the concept of
table-locks but the BDE does. How
can I make use of this functionality?

AThe Delphi manual errata file
\DELPHI\MANUALS.TXT docu-

ments a new type TLockType (an
enumerated type with values
ltReadLock and ltWriteLock) and
also two TTable methods that take
a TLockType argument (LockTable
and UnlockTable) that can be used
to apply and release table locks.

This often-missed file also pro-
vides a useful routine for printing
bitmaps using the Windows API
StrechDIBits rather than Delphi’s
StretchDraw method. A variant of
this is used by the VCL when a
form’s Print method is called:
TForm.Print calls it with the bitmap
returned by TForm.GetFormImage.

The Form With No Name

QWhen I read a form’s Name
property at run-time, it gives

me an empty string. At design time
it has a name – in fact it prevents
me from giving a blank name. Why?

AAt design time, the name is
used mainly to create the

form variable name and also the
form class name. At run-time, when
a form is created and reads itself in
from the executable it explicitly
ignores the name that was stored.
Here is a snippet from somewhere
deep inside the Classes unit:

ReadStr; { Ignore class name }
ReadStr; { Ignore object name }

Each component needs a unique
name so things like FindComponent

can be guaranteed to work. Now
consider an MDI application where
there are five MDI children, all
based on the same form type. If any
given form had its Name property
set to what it ‘should’ be, there
would be five components called
MDIChildForm, or whatever. It’s the
same with SDI apps. You can in-
stantiate a form as many times as
you want. To avoid problems, Name
is ignored. However, this is only
the case in Delphi 1. In Delphi 2, the
snippet above changes to:

ReadStr; { Ignore class name }
if csDesigning in
 Result.ComponentState then
 ReadStr
else
 Result.Name :=
 FindUniqueName(ReadStr);

So Name has a valid value at run-time
in Delphi 2. If you want the name set
up in Delphi 1 (and you know there
will only be one of each), in the
form’s OnCreate handler, use, eg:

{$ifdef Windows}
 Name := Copy(ClassName, 2,
 Pred(Length(ClassName)));
{$endif}

	What Tasks Are Running?
	Intercepting Keystrokes
	Opening And Closing Maximized MDI Children In Windows 3.1
	Converting Times To Floats
	Bitmaps For Brushes
	Multiple Arguments
	Table Locks
	The Form With No Name

